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ABSTRACT 

Every 2n-dimensional normed space E contains two n-dimensional subspaces 
E~ and E: which are orthogonal with respect to the inner product induced by 
the John ellipsoid of E and which satisfy d(E,, 17) <= [(K2(E)), where f(K2(E)) is 
some number that depends only on the cotype constant of E, denoted K:(E). 

1. Introduction 

In [6] B. Kashin proved that each space l~" can be expressed as a direct sum of 

two n-dimensional subspaces which are orthogonal with respect to the inner 

product in l~" and whose Banach-Mazur  distance from Euclidean space is less 

than some absolute constant. In [18] the second-named author showed that 

every finite-dimensional normed space admits such a so-called Kashin decom- 

position if a certain atfine invariant associated with the space, known as the 

volume ratio, is small. The auLthors of [19] went on to show that the volume ratios 

of the members  of many infinite families of normed spaces (e.g. l~ '~  l~') are 

uniformly bounded,  thus proving that these normed spaces admit a Kashin 

decomposition. The problem of calculating the volume ratio for certain families 

of normed spaces has been addressed by various authors (e.g. [14], [16]), and a 

systematic investigation of the volume ratio is carried out in [12]. 

Many of the families of normed spaces which have a uniformly bounded 

volume ratio also have a uniformly bounded cotype constant. The main result of 

this article shows that the latter property alone guarantees the existence of a 

Kashin decomposition. 
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Some remarks are required to describe the organization of this article. The 

results in §3 on the relation between the volume ratio of a normed space and the 

type constant of its dual, though not new, are nevertheless not widely known. 

Since they are of considerable interest in their own right and since they play a 

crucial role in the arguments of §4, proofs of these results are supplied. The new 

results appear in §4, where it is shown that, for each 0 in (0,1), the 

Banach-Mazur distance from Euclidean space of most (i.e. of a set of large 

measure) [0n]-dimensional subspaces of an n-dimensional normed space E is 

bounded above by a constant depending only on 0 and the cotype constant of E. 

The Kashin decomposition theorem stated in the abstract is deduced from the 

latter result. Finally, §5 contains the proof of Lemma 1, which is used in §4, and 

some remarks and open problems. 

2. Notation and terminology 

The Euclidean space 1~ consists of all real n-tuples x = (x t , . . . ,  x,) with the 

norm IIx II-- (XTIx, the unit ball of l~' is denoted b~, the unit sphere S" ', and 

the rotationally invariant probability measure on S" i is denoted o-,_1. (G~,,/z~,) 

denotes the Grasmannian manifold of all k-dimensional subspaces of l~' 

equipped with its natural probability measure induced by Haar measure on the 

orthogonal group. If 1 _-< k _-< l _-< n and if F is any/-dimensional  subspace of l~', 

let the Grasmannian manifold of all k-dimensional subspaces of F and its 

natural probability measure be denoted by (G~,/z~). Suppose that f is any 

integrable function on G ~, ; it follows from the invariance of Haar measure that 

In particular if f = X~, then 

(0) ~ Z(B) = f / z  kV(B f3 G ~d/z ;'(F), 

a formula which will be of assistance in §4; we will also comment on various 

"isoperimetric" problems related to (0) at the very end of this paper. 

Suppose now that E is an n-dimensional normed space. The Banach-Mazur 

distance coefficient, denoted d(E, l~), is defined by 

d(E, 17) = inf{tl TII II T ~ll: T:  E ~ l~ is an isomorphism}. 

It will be convenient to identify E with l~': let BE denote the unit ball of E, and 

let ~' denote the symmetric ellipsoid which is wholly contained in Bz and is of 
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maximum volume (the so-called John ellipsoid). Then the volume ratio of E, 

denoted vr(E), is defined by 

vr(E)  = (vol,  (BE)~ '`" 
\ v o l . ( ~ ) ]  ' 

where vol, ( - )  denotes Lebesgue measure in R". 

Suppose that H~ is a finite-dimensional Hilbert space and that X is a normed 

space. If 3/ denotes the canonical Gaussian probability measure on H1, then an 

operator  T E L(Hz, X)  (the collection of all operators from H~ into X)  can be 

given the norm 

( ~ H  \ 1/2 t (T)= [[Tx[[2d3") . 
1 

If H2 is any other finite-dimensional Hilbert space and S'H2----~ HI is a linear 

map, then it follows that l (TS) _-< II s II l (T).  Use the fact that 3' is invariant under 

unitary transformations and ithat any norm one operator  is a convex combination 

of unitary operations. 

We also require the notion of a 2-absolutely summing operator.  Suppose that 

X and' Y are Banach spaces and that T : X ~ Y is a bounded operator.  Then T 

is said to be 2-absolutely summing if there exists a constant C > 0 such that for 

each e > 0 there exist a probability space (~, ~ , /z )  and the following factorisa- 

tion of T in which [] u II II v II--< c + e: 

u i v 

(here i is the canonical inclusion mapping). The smallest such constant C is 

denoted ~2(T). 
Suppose that Xo is a subspace of X;  clearly ~r~(T ],~,)~ ~r2(T), which is an 

observation that is used below. 

If X is a finite-dimensional normed space then it follows that, for each e > 0, 

there exists m ~ 1 such tha~: F admits the following factorisation: 

v w 
X ~ 1~ ~ > I~ ~ Y 

in which ]Iv IJ_- < 1, I! w 11_- < 1 an~d ]]A[[_ -< rr2(T)+ e, where A is the diagonal mapping 

given by A(e~) = &e~ for some 8, = 0 (1 _--< i _--< m), and (e~)~%~ is the standard basis 

of IT. 

Finally, we recall the notion of type and cotype. A Banach space X is said to 

be of type 2 if there exists a constant T > 0 such that for every finite collection of 

vectors Xl . . . . .  x~ in X, we have 
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where (ri(t]):=l is the sequence of Rademacher functions. The smallest such T, 
denoted T,(X), is called the type 2 constant of X. It is easily seen that the above 
inequality will remain valid if the Rademacher functions are replaced by 
independent N(0, l )  Gaussian random variables, a remark which is used below. 
X is said to be of cotype 2 if there exists a constant K > 0 such that for every 
finite collection of vectors X I , .  . . , x, in X,  we have 

(6' 11 2 rt U ) X ,  1 1  dt) 2 ; ( $II.II.) ' I 2  . 

The smallest such K, denoted K2(X) ,  is called the cotype 2 constant of X. 

3. The volume ratio 

The relation between the volume ratio and the existence of large almost 
Euclidean subspaces is explained by the following theorem of M. Rogalski ([12]), 
which is a slight refinement of a result proved by the second-named author ([17], 

THEOREM A. Suppose that E is an n-dimensional normed space, that 0 < 0 < 
1 and that k 5 On. Then, identifying E with 1: so that bZC BE,  we have for all 
t > l  

where 

We now state and prove the following unpublished (besides seminar notes 
[12]) observation of N. Tomczak-Jaegermann, whom we thank for the permis- 
sion to include it here. For a slightly more general fact see Remark 3 in 04. 

THEOREM B. Suppose that E is an n-dimensional normed space which has 
been identified with 1;  so that b2" is the ellipsoid of maximum volume contained in 
BE. For each 1 5  k 5 n and for each k-dimensional subspace Fof E, we have 

dim F 
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In particular, if dim F >= On then 

The proof of Theorem B makes use of the following inequality of W. Blaschke 

([1]) and L. A. Santalo ([15]). We first remark that the standard inner product on 

l~' makes it possible to identify simultaneously an n-dimensional normed space E 
and its dual E* with l~. 

THEOREM C. Suppose that E is a finite-dimensional normed space which has 
been identified with l~. Then 

vol, (BE)" vol, (BE.) ----< (vol, (b~)) 2. 

A new and interesting proof of Theorem C appears in [14], and some 

applications to the geometry of Banach spaces are given in [9], [3] and [4]. We 

also require two further results, which are both known. A short proof of the first 

of these, which appears in 112], is reproduced here to make our account more 

self-contained. Proposition E on the other hand is less recondite; a proof can be 

found in [2]. 

PROPOSITION D. Suppose that E is a Banach space and that T is an operator 

from l~ into E. Then 

l(T)<= T~.(E)rr2(T*). 

PROOF. Let e > 0 be given, and suppose that 

E* ~ 1~ ~> 1"2 ~>1~ 

is a factorisation of T* witlh I1~ II =< 1, II w I1_<-1 and IIAII-<_ (1 + ~)~2(T*), where 
A(e,) = &e, (1 =< i =< m ). Then 

I(T)= l(v*a*w*) 

_-< ltv*A*)llw*ll 

_-<(f~, ,=~ g,(w)v*h* e, 2dP) '/2 

(where g~, . . . ,  g, are independent real gaussian N(0, 1) random variables on a 

probability space (f~, ~, P)) 
( ~  \ 1/2 

< T2(E) ,=, IIv*a*e, II ~) 
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= ~ / E ) t t a * r [  

=< ~ (E) (1  + e)~2(T*). 

Since e is arbitrary, the result follows. 

PROPOSITION E. Suppose that E is an n-dimensional normed space and that 
v : E --~ 1~ is an operator such that v ~(b~) is the ellipsoid of maximum volume in 
BE. Then ~ f f v )=  n 'j2. 

PROOF OF THEOREM B ([12]). Suppose that v • E ~ 1~ is an operator of the 

type described in Proposition E. 

Let w =(vrov)Iv,  where :r'l~--->v(F) is an orthogonal projection. The 

Blaschke-Santalo inequality gives 

volk(w(Bv))/volk k < (b2) =volk (b~)/volk(w* '(By,)) 

=1/(fs~, (1/tlw*(x)[[~)d°k ') 

It 
by Jensen's inequality applied to the function t ~ t k/2. Applying Propositions D 

and E, observing that zr2(w)_- < 7r~(v), we obtain 

(volk(w(Br))/volk (b~))'/k <= (fs~ ' []w*(x)]] 2 dok ,),/2 

= ( 1 / V % l ( w * )  

<= (1/X/k)vr2(w )T:(F*) 

<-_ X/(n/k  ) TE(F*). 

The statement of Theorem B now follows at once. 

4. The Kashin decomposition for Banach spaces of cotype 2 

The other main ingredient in the argument which we present below is the 
following theorem of G. Pisier ([11]). 
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THEOREM F. There exists an absolute constant C > 0 such that ]:or every 

n-dimensional normed space E, we have 

T2(E*)<= Clog(d(E,  17)+ 1). K~(E). 

Combining Theorems A, B and F, we are now in a position to prove a theorem 

of the type described in the Introduction. The proof utilises ideas which V. D. 

Milman has used in [9] to prove the existence of large almost Euclidean quotient 
spaces of subspaces in an arbitrary finite-dimensional normed space (see also 

Remark 4). To avoid unnecessary repetition it is to be understood that C1, C2 . . . .  

are absolute constants. 

THEOREM 1. Suppose that E is an n-dimensional normed space which has 

been identified with l~ so that b7 is the ellipsoid of maximum value contained in 

Be, that O< 0 < 1 and that k = [On]. Then 

tz~ F ~ G k : d ( F , l ~ ) < = m a x  (CK~,(E)) 7/° ° ) , \ 1 _ 0  ] 11= 

where C is an absolute constant. 

For the proof of Theorem 1 we need the following lemma, whose proof we 

postpone until §5. 

LEMMA 1. Given a > 1 let g : [0, 1]---> [1,~) satisfy 
(i) g(Ox) <= (a log g(x)) '/'' o5 

for x @ [1/2,1] and 0 E [0, 1). Then, for all x ~ [0, 1) 

(ii) g ( x ) < m a x  {a 7/" x), (. 7 ~ 7/(1 x' / 
\1 - x }  I " 

PROOF OF THEOREM 1. Suppose that F is a k-dimensional subspace of E. 
Given 0 E (0, 1), it will be convenient to consider subspaces H of F of dimension 

s = [Ok] + 1 rather than the dimension [Ok], which is given by applying directly 

Theorem A. But since every subspace of codimension one is (2+ e)- 

complemented, it follows that the corresponding estimate for the Banach-Mazur 

distance is worse than in Theorem A only by a constant factor (_-< 3; one can 

easily show that if FoC F, dim F/E,  = 1, then d(F, I~)= < 2d(F0, l~-t)+ 1), while 

the estimate for the measure is unchanged. So, for all F C E, 0 C (0, 1) and t > I, 

(1) tx~ H E G f : d ( H , I ~ )  <- Cl t lvolk(b~)  ] > l - t - - r .  

For x E [0, 1], define 
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( 1 )  
g ( x ) = i n f  IA "3k >= nx, tx~{F E G"k:d(F,l~)<= A } -  > 1 - ~ / .  

Notice that if d(F,l~)<= A, then,  by Theorems  B and F, 

{ ~ ,  ,/k< C.(x)K~(E)logA, where  C2(x) < C3 . 
(2) \yolk (b~)] . . . .  h/-xx' 

in part icular  C2(x)~ C3~/2 = (74 if x ~ 1/2. 

We claim that g satisfies the assumptions of L e m m a  1 with a = 2CIC4K2(E), 
where  C1 is the constant  appearing in (1). Indeed,  if x E [1/2, 1] and 0 ~ [1/2, 1), 

then applying (1) with t = 2 and (2) with A = g(x) we see that if d(F, l~) <_ g(x) = 
A, then 

(3) /z[{H E G f :  d(H, l~)<= (2CtC4K2(E)IogA) '/~' 0'= (a l ogg (x ) )  1/(1 o,} > 1 _ l  
2 s , 

where  s = [Ok] + 1 > Ok >= Oxn. Now, using (0) from §2 and the definition of g we 

obtain 

ttT{H E O T : d(H, l~) <= (a log g(x )) 1/0 0)} ~ t/,~,{F : d(F, Z~) < g(x)}" (1 - l / T )  

-> ( i  - 1/2 k 1)(1 - l i t  ). 

Now if 0 < 1 - 1/k, and consequent ly  s < k, the latter quant i ty  exceeds 1 - 1/2" ' 
and so g(Ox)<= (o~ l o g g ( x ) )  "° "~. This is also trivially true if 0 => 1 - 1 / k  and 

s = k (at least as long as c~ log g(x) >- 5/4, which we can assume). This shows that 

g satisfies the assumptions of L e m m a  1 with c~ = CsK2(E) and so 

g(x)<=max {(CsK2(E))7/°~',(17~_ x)  7/~-x~} , 

which is exactly the assertion of T h e o r e m  1. 

REMARK 1. The  s ta tement  of Theo rem 1 is not in tended to be optimal.  In 

particular,  an examinat ion of the proof  reveals that it is possible to improve the 

index 7/(1 - 0) to (2 + s)/(1 - 0) in the first exponent  and to (1 + e)/(1 - 0) in the 

second term (both in the base and in the exponent )  for any e > 0 provided that 

the measure  est imate is suitably modified. 

We now obtain the theorem stated in the abstract with an estimate for the 

B a n a c h - M a z u r  distance from Eucl idean space of the subspaces in the decom- 

position. 

THEOREM 2. There exists an absolute constant C >0 such that every 2n- 
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dimensional normed space E contains an n-dimensional subspace F with the 
following properties: 

(i) d(F, l~) <= CK2(E)2(log(K2(E) + 1))4; 

(ii) d(F l, l~) <= CK2(Ef-(log(K2(E) + 1)) 4 

where F ± is the orthogonal complement of F with respect to the inner product 
induced by the John ellipsoid of E. 

PROOF OF THEOREM 2. In general "decomposit ion" results follow im- 

mediately from the "measure theoretic" results such as Theorem 1. This is also 

the case here, but instead of (i) and (ii) we get estimates of the Banach-Mazur  

distances of CK2(E) TM. To get (i) and (ii) we must work a bit harder. Setting 

1 - 0 = 1/log(K2(E)) in Theorem 1 gives a set of large measure of subspaces G 

of dimension k = [20n] such that 

d(c, ,  k < _ ~ "~ 12)= (C,K~(E)) 4'°g 

We now apply equation (3) in Theorem 1 with 

t h = l / 2 6  ' and A=(C6KffE))  4'°gK~3E). 

This gives rise to a set of n-dimensional subspaces F satisfying 

d(F, l~) <= (C6K2(E)(log KffE))2) '/° *~ 

<-_ CKffE)2(log(K2(E) + 1)) 4. 

Since this set is of large measure (in particular, of measure > ½), there exists a 

member of the set whose orthogonal complement is also a member;  the latter 

remark follows from the fac! that the mapping F--~ F ± is a measure preserving 

transformation of G2, ". This completes the proof of the theorem. 

REMARK 2. The argument of Theorem 2 shows that for each 0 in (0, 1) there 

exists a constant C(O) such that every n-dimensional normed space E contains a 

subspace F of dimension k = [On] (in fact, a set of large measure of such 

subspaces) with 

d(F, l~)<= (C(O)K2(E)(log(K:(E)+ 1))2) '/t' o~ 

Moreover,  the constant C(O) may be chosen to be uniformly bounded on any 

interval 0 <  0 <_-On< | .  At least for small values of 0 this improves the 

dependence on K2(E) given by Theorem 1. 

REMARK 3. Theorems B, 1 and 2 remain true if we replace the inner product 

norm on E generated by the John ellipsoid by any norm 1 • 1 satisfying: 
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IIll~ ~ 1 "  1, ~r21I:(E, II'll)~(~,l"l))<=a~/-nn; 
the constants " C "  in Theorems 1 and 2 depend then additionally on a and we 

have to introduce the factor " a "  in the assertion of Theorem B. 

Theorem 2 sheds light on the local structure of Banach spaces of cotype 2. The 

following result is an immediate consequence. 

COROLLARY 3. Suppose that X is a Banach space of cotype 2. All of the 

finite-dimensional subspaces of X admit a Kashin decomposition with a uniform 
bound on the Banach-Mazur distance from Euclidean space of the members of 

the decomposition. 

We conclude the discussion with some remarks about the relationship 

between cotype and the Kashin decomposition. First, it follows from the results 

of [5] and [8] that any Banach space which satisfies the conclusion of Corollary 3 

is necessarily of cotype 2 + e for each e > 0. Secondly, it is shown in [19] that 

there exists a Banach space X which satisfies the conclusion of Corollary 3 and 

yet is not of cotype 2. Lastly, there is an example in [5] of a Banach space of 

cotype 2 + e for each e > 0 which does not satisfy the conclusion of Corollary 3. 

Thus Corollary 3 is in a qualitative sense the best result. We now present an 

example which shows quantitatively the optimality of Corollary 3. Suppose that 

X is a Banach space and that n _-> 1. Then K2,, (X) is defined to be the least 

number K such that for every collection of n vectors x~, . . . ,  x, in X, we have 

x , ,  ll ) 
Thus X is of cotype 2 if and only if sup{K2.n(X):n _-> 1}<~ .  Moreover,  it 

follows from the results of [20] and Theorem 2 that if K2,n (X)_-< C then every 

n-dimensional subspace of X admits a decomposition with distances depending 

only on C. 

EXAMPLE 4. Suppose that (A,)n~ is any unbounded increasing sequence of 

positive numbers. There exists a Banach space X such that K2.n (X) = O(,~n) and 

X does not satisfy the conclusion of Corollary 3. 

IDEA OF THE PROOF. We may assume that 1 _-< An _-< n~:4. For each n _-> 2, let 

q(n) be defined by n ~/2 ~/q~n~ = min{A., n ~/2 ~/q~.-l)} so that 2 =< q(n) < q(n - 1) < 

4 for all n => 2. Let E.  = l~<.) and let X = (Z:=2 O E.)2. An elementary argument 

using some results from [7] shows then that K2.,,, (X) =< A,. for all m, while, by 

Example 3.1, [5], the E . ' s  do not contain half-dimensional "nearly Hilbertian" 

subspaces. 
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Example 4 shows that Theorem 2 is optimal in the sense that there is no 
weaker assumption than uniform boundedness on the constants K2,, (X )  which is 
still a sufficient condition for the existence of Kashin decompositions. 

Finally, we restate a question which has been stated many times before (e.g, 
[101). 

PROBLEM. Does there exist a function f such that vr(E) < f (K2(E))  for every 
finite-dimensional normed space E? 

5. P r o o f  of  Lemma 1, and remarks 

Lemma 1 will follow immediately from 

LEMMA 2. Given K > 0  let f : [O, 1]--~ R ÷ satisfy 

(j) f(Ox) < (logf(x)+ K)/(I - 0) for x E [1/2, 1] and 0 E [0, 1). 
Then for all x E [0, 1), 

max K, log (JJ) [ ( X ) < l - x  ~ - x  " 

Indeed, to get Lemma 1 from Lemma 2, set f = log g and K = log a. 

PROOF OF LEMMA 2. Assume first that f is nondecreasing, in particular 
f ( x )  < f(1) for x E [0, 1]. Clearly (jj) is then satisfied if x is sufficiently close to 1. 
Consider the smallest number ~r E [0, 1) such that (jj) is satisfied for x E (o-, 1). It 
is enough to show that o-=0. To this end, suppose ~ > 0  and let 0 = 
min{~,2o-}, x = ~r/0; observe that then 

1 < 2 and < 1 ~ ' - -  - -  x E ( m  1 ) A  [ 1 / 2 , 1 ) .  
1 - x  1-o-  

Thus applying (j) for this choice of x, 0 we get 

[(o.) < log{(x)0+ K< 1@0 [log (1 7 x  max {K, log 1 _--~})  + K] 

2 [lOg(l14 {K, logll_~4 } ) + K ]  < ~_---~ _ ~ max 

_21_o. flog 1-o-14 + K +log (max {g, log 11__~4 })] " 

Now if K > log(14/(1- o')), then we get from the above 

2 5 K <  7K 
f(~r)< _ [ K + K + l o g K ] < l _ o . . 2  1---Z---~ 
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I f ,  on the other hand, K _-< 1 o g ( 1 4 / ( 1 -  or) ) ,  then similarly 

2 [  14 . 14 14 1 f ( ~ )  < ~ log ~ + log ~ + log log 

14 
< log 1C~. 

< "7 7 
1 - cr l o g  1 - ~r ' 

the last inequality following from the fact that log2u <7 /51ogu  if u > 7 .  

Therefore in either case (j j) is satisfied for x = ~r and hence (as f is nondecreas- 

ing and the right-hand side of (jj) continuous) also in some interval (o- - e, ~). 

This would contradict the minimality of ~r and so we must have o-= 0. 

To settle the case of general f, define, for r < 1, f, (x) = sups<_,~f(s). Since by 
(j), 

f(s) < log f 0 ) +  K 
= 1- -s  ' 

each [, is finite (and also clearly nondecreasing). Thus (j j) holds if we replace f 

by f, ; letting r + 1 concludes the argument. 

REMARK 4. Arguing almost identically as in Lemmas 1 and 2 one can show 

that if h : [0, 1] + [1, ~) satisfies 

h(Ox)<=(Clogh(x))l/~l 0}2 f o r O E [ O ,  1) and x E [ 0 , 1 ] ,  

then 

h(x)__<max {c,5/(1 xr-, { 15 x~15/(l-x)2 / 
\(1 - x )  21 ! • 

Combing this with formula (5) from V. D. Milman [9] shows that, given d > 1, 

every n-dimensional normed space has a quotient of a subspace, say F, of 

dimension k >= On with d(F, l~) <= d and 

O = l - c '  ~1 logd 

(just let h(x)= inf d(F, 1~ ~''~) where the infimum is taken over all F 's  which are 

quotients of a subspace of E with dim F >-_ nx). This improves the estimate from 

[9]. We do not know, however, any "measure theoretic" version of that result. 

Let us state the following. 
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PROBLEM. Do there exist C<oo  and r E ( 0 , 1 )  (resp. a function on 

(0, 1) : r ~ C = C(r))  such that every n-dimensional normed space E admits 

Euclidean structure for which if F C G are fixed subspaces of E with dim F = 
[1~2On] and dim G =[On], then g~,F(UG l) is C-Hilbertian for "most of" 

U ~ O(n)  (by gn we denote the quotient map E ~ E/H).  In particular, does 

every n-dimensional space admit a quotient, whose cotype 2 constant is bounded 

by an absolute constant (resp. "most of" quotients). The same question for 

volume ratio. 

REMARK 5. One can weaken significantly the condition (j) of Lemma 2 and 

still get that f ( x ) <  F(x), where F is some universal function defined on [0, 1). 

For example, one can replace (j) by 

fj)' f (  Ox ) <= 

where 6 and 6 are nonnegative, nondecreasing functions (on (0, 1) and (0,o~) 

respectively) with 6 ( z ) =  O(z p) for some p < 1, 

4 ~ ( 0 ) = 0  ~ for s o m e q < ~  

and still get 

(j j)' c(1)q,, 
(with C depending on p, q and the constants involved) in estimates of the order 

of growth of ~b and ~b. 

REMARK 6. Let us return to the formula (0) from §2. Notice the following 

consequence of it: if 1_-< k < l < n and A C GT, then 

7. (A) d, ~ 7,{H E 0"" = IJk. H C F  for some FEA}>=tzT(A) .  

However, this estimate is apparently not the best possible. We have the 

following "isoperimetric" 

PROBLEM. What is inf{Tk(A):/xT(A) = 8} for ~ E(0,  1)? 

If k = l ,  I = 2  and n = 3 ,  then we conjecture that the infimum equals 

X/6(2 - 8) ( >  8 for any 6 E O, 1)). One can also ask a more general question, 

which is more directly related to our argument: what is inf/x~,(B) over all 

B C G k  such that #~'{FE "" ~ = = " G~. l~k(Bf3G~>=f l}>~? (If /3 1, we get the 

problem above.) 
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REMARK 7. Suppose that P is a symmetric convex polytope in Rn with 2s 
vertices and that E is a normed space whose unit ball is affinely equivalent to P. 
From Theorem B we obtain 

(see e.g. [lo]). So the ellipsoid 8 of maximum volume in P satisfies 

vol, (P) 'In ( )  vol, ( 8 )  5.-S. 

This should be compared with the estimate 

(e.g. [17]), which is superior when s and n are of similar magnitude. We would 
conjecture that we actually have 

NOTE. After this paper was written we discovered that V. D. Milman has 
obtained some superior estimates for the distance from Euclidean space. He has 
proved that, given 6 in (0, I), every n-dimensional normed space E contains a 
subspace F with dim F = k 2 en and 

Added in proof. The problem stated at the end of 44 has recently been solved 
by J. Bourgain and V. D. Milman in their preprint Sections Euclidiennes et 
volume des corps syme'triques convkxes duns R". 

The first-named author would like to thank the S.E.R.C. and the Imperial 
Chemical Industries for their financial assistance, the University of Missouri - 
Columbia for its hospitality, and Dr. D. J. H. Garling for his help and advice. 
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